The TURBO Diaries: Application-controlled Frequency Scaling Explained
نویسندگان
چکیده
Most multi-core architectures nowadays support dynamic voltage and frequency scaling (DVFS) to adapt their speed to the system’s load and save energy. Some recent architectures additionally allow cores to operate at boosted speeds exceeding the nominal base frequency but within their thermal design power. In this paper, we propose a general-purpose library that allows selective control of DVFS from user space to accelerate multi-threaded applications and expose the potential of heterogeneous frequencies. We analyze the performance and energy trade-offs using different DVFS configuration strategies on several benchmarks and real-world workloads. With the focus on performance, we compare the latency of traditional strategies that halt or busy-wait on contended locks and show the power implications of boosting of the lock owner. We propose new strategies that assign heterogeneous and possibly boosted frequencies while all cores remain fully operational. This allows us to leverage performance gains at the application level while all threads continuously execute at different speeds. We also derive a model to help developers decide on the optimal DVFS configuration strategy, e.g, for lock implementations. Our indepth analysis and experimental evaluation of current hardware provides insightful guidelines for the design of future hardware power management and its operating system interface.
منابع مشابه
Scaling Turbo Boost to a 1000 cores
The Intel® CoreTM i7 processor code named Nehalem provides a feature named Turbo Boost which opportunistically varies the frequencies of the processor’s cores. The frequency of a core is determined by core temperature, the number of active cores, the estimated power consumption, the estimated current consumption, and operating system frequency scaling requests. For a chip multi-processor(CMP) t...
متن کاملExtending Amdahl's Law for Multicores with Turbo Boost
Rewriting sequential programs to make use of multiple cores requires considerable effort. For many years, Amdahl’s law has served as a guideline to assess the performance benefits of parallel programs over sequential ones, but recent advances in multicore design introduced variability in the performance of the cores and motivated the reexamination of the underlying model. This paper extends Amd...
متن کاملApplication of Turbo-Expander for Greenhouse Gas and Air Pollutant Emissions Reduction Using Exergy and Economical Analysis
The effects of greenhouse gases (GHG) on the growth of global warming, and increase of GHG and air pollutant emissions for energy production have forced the need of energy recovery which is normally wasted in industrial plant. The present research work focused on the GHG and air pollutant emissions reduction employing pressure waste energy recovery. Pressure break-down via Joule-Thomson valve i...
متن کاملChameleon: Application Controlled Power Management with Performance Isolation
In this paper, we present Chameleon—an application controlled dynamic voltage and frequency scaling approach for reducing energy consumption in mobile processors that see multimedia workloads. Our approach exports the entire responsibility of power management to the application level. Since multimedia applications impose soft real-time constraints, a key goal of our approach is to reduce energy...
متن کاملA Programmable Max-Log-MAP Turbo Decoder Implementation
In the advent of very high data rates of the upcoming 3G long-term evolution telecommunication systems, there is a crucial need for efficient and flexible turbo decoder implementations. In this study, a max-log-MAP turbo decoder is implemented as an application-specific instruction-set processor. The processor is accompanied with accelerating computing units, which can be controlled in detail. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014